A Weil Descent Attack against Elliptic Curve Cryptosystems over Quartic Extension Fields

نویسندگان

  • Seigo Arita
  • Kazuto Matsuo
  • Koh-ichi Nagao
  • Mahoro Shimura
چکیده

This paper shows that many of elliptic curve cryptosystems over quartic extension fields of odd characteristics are reduced to genus two hyperelliptic curve cryptosystems over quadratic extension fields. Moreover, it shows that almost all of the genus two hyperelliptic curve cryptosystems over quadratic extension fields of odd characteristics come under Weil descent attack. This means that many of elliptic curve cryptosystems over quartic extension fields of odd characteristics can be attacked by Weil descent uniformly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Security of Superelliptic Curves Based Cryptosystems against GHS Weil Descent Attacks

The GHS Weil descent attack by Gaudry, Hess and Smart was originally proposed to elliptic curves over finite fields of characteristic two [11]. Among a number of extensions of this attack, Diem treated the cases of hyperelliptic curves over finite fields of arbitrary odd characteristics [4]. His results were partially extended to algebraic curves of which the function fields are cyclic Galois e...

متن کامل

On Implementation of GHS Attack against Elliptic Curve Cryptosystems over Cubic Extension Fields of Odd Characteristics

In this paper, we present algorithms for implementation of the GHS attack to Elliptic curve cryptosystems (ECC). In particular, we consider two large classes of elliptic curves over cubic extension fields of odd characteristics which have weak covering curves against GHS attack, whose existence have been shown recently [16][17][18]. We show an algorithm to find definition equation of the coveri...

متن کامل

A Secure Family of Composite Finite Fields Suitable for Fast Implementation of Elliptic Curve Cryptography

In 1999 Silverman [21] introduced a family of binary finite fields which are composite extensions of F2 and on which arithmetic operations can be performed more quickly than on prime extensions of F2 of the same size. We present here a fast approach to elliptic curve cryptography using a distinguished subset of the set of Silverman fields F2N = Fhn . This approach leads to a theoretical computa...

متن کامل

Cover and Decomposition Index Calculus on Elliptic Curves Made Practical - Application to a Previously Unreachable Curve over $\mathbb{F}_{p^6}$

We present a new “cover and decomposition” attack on the elliptic curve discrete logarithm problem, that combines Weil descent and decomposition-based index calculus into a single discrete logarithm algorithm. This attack applies, at least theoretically, to all composite degree extension fields, and is particularly well-suited for curves defined over Fp6 . We give a real-size example of discret...

متن کامل

Cover and Decomposition Index Calculus on Elliptic Curves made practical. Application to a seemingly secure curve over Fp6

We present a new “cover and decomposition” attack on the elliptic curve discrete logarithm problem, that combines Weil descent and decomposition-based index calculus into a single discrete logarithm algorithm. This attack applies, at least theoretically, to all composite degree extension fields, and is particularly well-suited for curves defined over Fp6 . We give a real-size example of discret...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 89-A  شماره 

صفحات  -

تاریخ انتشار 2004